US009195446B2

a2 United States Patent

Fiebig et al.

US 9,195,446 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND REGISTRY FOR ENABLING
THE ENFORCEMENT OF DESIGN-TIME
POLICIES DURING RUNTIME IN A
SERVICE-ORIENTED ARCHITECTURE

(735)

(73)
")

@

(22)

(65)

(30)

Mar. 27, 2012

(1)

(52)

(58)

Inventors:

Thorsten Fiebig, Mannheim (DE); Gary

Woods, Seeheim (DE); Daniel Adelhart,

Bockhorn (DE)
Assignee:

Notice:

SOFTWARE AG, Darmstadt (DE)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 450 days.

Appl. No.: 13/457,819

Filed: Apr. 27, 2012

Prior Publication Data

Oct. 3, 2013

US 2013/0262646 Al

(56)

WO

References Cited
U.S. PATENT DOCUMENTS

6,763,353 B2 *
7,757,204 B2 *

7/2004 Lietal. ..ocooooiniiveenns 719/320
7/2010 Fildebrandt et al. 717/104

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2006026659 A2 * 3/2006
OTHER PUBLICATIONS

“Why Runtime Governance is Critical for Service-Based Applica-
tions,” Progress Software, XP-002682007, Feb. 2009.

(Continued)

Primary Examiner — Viet Vu
Assistant Examiner — Michael A Chambers

Foreign Application Priority Data

Int. Cl1.
GO6F 15/173
GO6F 12/00
GO6F 9/44
GO6F 9/445

(2006.01)
(2006.01)
(2006.01)
(2006.01)

(Continued)
U.S. CL

15020 N

12161454

CPC .. GOGF 8/60 (2013.01); GOGF 8/20 (2013.01);
HO4L 41/0893 (2013.01); GO6F 11/368
(2013.01); HO4L 67/34 (2013.01)

Field of Classification Search

CPC GOGF 8/20; GOGF 8/60; HO4L 41/0893;
HO4L 67/34
USPC ..o 704/2;717/101; 709/223; 707/822

See application file for complete search history.

Refine

&7

Certain example embodiments relate to computer-imple-
mented methods enabling the enforcement of design-time
policies during runtime in a service-oriented architecture
(SOA). The SOA includes SOA assets (e.g., web services),
and at least one runtime container configured to enforce runt-
ime policies on SOA assets executed therein. Example meth-
ods may include:

(74) Attorney, Agent, or Firm — Nixon & Vanderhye PC

ABSTRACT

obtaining at least one design-time policy from a SOA reg-
istry, the at least one design-time policy applying to SOA
assets grouped into a design-time domain;

automatically deriving at least one runtime policy from the
at least one design-time policy and at least one runtime
domain from the design-time domain, the runtime
domain indicating at least one runtime container;

performing a compatibility check to determine whether the
at least one runtime policy is enforceable by the at least
one runtime container; and

depending on the compatibility check, automatically
deploying the at least one runtime policy to the runtime
container.

21 Claims, 4 Drawing Sheets

Define Business Domains

1000

v

Define Domain Policies
(design time)
2000

Registry/

¥

Repasitory

Deduce Runtime Policies

3000

v I

|

Deploy Runtime Palicies |

to Runtime —- !

4000 Capabilities
Deploy Policies
Finance Procurement HR

Domain Domain Domain

US 9,195,446 B2

Page 2
(51) Int.CL 2007/0168384 Al* 7/2007 Fildebrandt et al. ... 707/103 R
2009/0138795 AL* 52009 Liuetal .o, 715/234
HO4L 12//24 (2006.01) 2000/0138940 AL* 52009 Liuetal. ... 726/1
HO4L 29/08 (2006.01) 2000/0281996 AL* 11/2009 Liuetal. .o 707/3
GOGF 11/36 (2006.01) 2010/0095266 AL* 42010 NOVAK ... 717/101
2010/0125618 AL* 52010 Duttaetal. ... 707/822
(56) References Cited 2010/0161629 Al 6/2010 Palanisamy et al.
2011/0029479 Al 22011 Novak et al.
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

7,774,745 B2 *
8,266,184 B2*
2003/0055624 Al*
2007/0069896 Al*
2007/0157159 Al*

8/2010
9/2012
3/2003
3/2007
7/2007

Fildebrandt et al. 717/105
Livetal. 707/802
Fletcheret al.c....... 704/2
Boland et al. 340/572.1
Fildebrandt et al. 717/104

Aaron Skonnard, “Understanding WS-Policy,” XP-002355708, Aug.

2003.

* cited by examiner

U.S. Patent Nov. 24, 2015 Sheet 1 of 4 US 9,195,446 B2
Fig. 1
Registry/Repository
10
Asset Design-time | | Taxonomies | | Notifications | | Approvals
Catalogue Policies 120 130 140
100 110

RT-PEP
30a

A 4
Runtime
Container
20a

Deploy

RT-PEP
30b

y

Runtime
Container
20b

Runtime Policies

U.S. Patent

Refine

Nov. 24, 2015

Fig. 2

Define Business Domains

1000

v

Define Domain Policies
(design time)
2000

v

Deduce Runtime Policies

3000

v

Deploy Runtime Policies
to Runtime
4000

Sheet 2 of 4

US 9,195,446 B2

Registry/

Repository

Capabilities

Deploy Policies

Finance
Domain

Procurement
Domain

HR
Domain

U.S. Patent Nov. 24, 2015 Sheet 3 of 4 US 9,195,446 B2

Fig. 3

Check required capabilities
of runtime policy
3100

. Create
Do the required g o
capabilities match no R not|f||9at|on tha:
the runtime container ag’gé‘;ypﬁylzo
ility?
capability? 3200
yes

Translate runtime policy to
runtime container-specific
format
3300

\ 4
Deploy translated runtime

policy
4000

U.S. Patent Nov. 24, 2015 Sheet 4 of 4 US 9,195,446 B2

Fig. 4
Busl Domai
R
,r*"‘/f ,f;r\\
. !
= § Precurement

Finance _f .
» Service 1 {
.. R HR
«Servicam ..

%‘z ,.f' /

\-. . RT centainer {

- RT contalner n ""

US 9,195,446 B2

1
METHOD AND REGISTRY FOR ENABLING
THE ENFORCEMENT OF DESIGN-TIME
POLICIES DURING RUNTIME IN A
SERVICE-ORIENTED ARCHITECTURE

This application claims priority to EP Patent Application
No. 12 161 454.9 filed 27 Mar. 2012, the entire contents
which is hereby incorporated by reference.

1. TECHNICAL FIELD

Certain example embodiments relate to a method and a
registry for enabling the enforcement of design-time policies
during runtime in a service-oriented architecture.

2. BACKGROUND AND SUMMARY

Modern computing systems nowadays involve a plurality
of'physically distinct computer connected over networks such
as the Internet. In such distributed environments, the concept
of service-oriented architectures (SOA) has become increas-
ingly popular. In a SOA, the individual computers offer their
functionality in the form of services, which are well-defined
pieces of functionality defined by an interface. One service
provides functionality to the other services, so that the overall
computing task is performed in that the services interact with
each other, each fulfilling a piece of the overall task.

As aresult, a SOA provides a more flexible architecture by
splitting monolithic applications into components that can be
reused and orchestrated to get new functionality on demand.
New or changed processes (which include technical pro-
cesses, such as the control of an assembly line, and also
business processes) can be implemented by combining exist-
ing services and/or other types of SOA assets.

Since the implementation of a SOA leads to a collection of
distributed and loosely coupled services, maintaining
interoperability and reusability in such an environment is a
particularly difficult task, which is commonly referred to as
“SOA governance”. Besides the technical aspects of interop-
erability and reusability, SOA governance also has to address
other aspects, such as the enforcement of security or legal
regulations on SOA components.

SOA governance can be split into design-time and runtime
governance. The design-time governance concerns the man-
agement of the participating SOA assets in a SOA registry/
repository, the enforcement of design-time policies, lifecycle
management and the versioning of SOA assets. The runtime
governance concerns aspects such as monitoring the runtime
interaction between the SOA assets and enforcing runtime
polices. The runtime policies are typically deployed into so-
called runtime containers of SOA assets and enforce the
proper interactions between the SOA assets, which may
include the rejection of unauthenticated accesses and/or
checking the standard compliance of SOA asset invocations.

In the prior art, a variety of SOA registries/repositories are
known (e.g. CentraSite of applicant, Systinet, WSRR, SOA
Software, Oracle Enterprise Repository), which offer design-
time governance features, such as the registration of SOA
assets, lifecycle management (cf. e.g. US 2010/0095266 A1),
and the enforcement of design-time policies. Some of the
existing products also offer the capability of defining the
runtime policies and deploying them to runtime containers
(also called policy enforcement points). Moreover they are
able interoperate with runtime governance products that
monitor runtime interactions and report metrics data and runt-
ime events. Certain runtime products are addressing the rogue
services detection by monitoring service runtime interactions

10

15

20

25

30

35

40

45

50

55

60

65

2

(e.g. Progress). Advanced rogue service detection goes
beyond the runtime monitoring by applying so-called service
harvesting, which can be performed by checking runtime
containers to find out which services are deployed (cf. e.g. US
2010/0161629 Al). In summary, all of the existing products
are either focused on the above-explained design-time gov-
ernance or the runtime governance.

However, there is always the risk of a control gap between
design-time and runtime governance. This gap can e.g. be
caused by services which are not registered in the SOA reg-
istry/repository (so-called “rogue services”), thereby com-
pletely bypassing any design-time governance. It can also be
caused by registered services violating the design-time gov-
ernance during runtime, e.g. when a service is calling other
services which it is not allowed to call, or when a service can
already be deployed to the production runtime container
albeit the service’s lifecycle state in the SOA registry/reposi-
tory defines that it is still under development. All these prob-
lems are caused by the fact that the runtime governance is not
in line with the design-time governance.

Itis therefore the technical problem underlying the present
invention to provide a way of ensuring that all design-time
policies for a given SOA are effectively and reliably enforced
during runtime, thereby at least in part overcoming the above
explained disadvantages of the prior art.

This problem is according to one aspect of the invention
solved by a computer-implemented method for enabling the
enforcement of design-time policies during runtime in a ser-
vice-oriented architecture (SOA). The SOA comprises a plu-
rality of SOA assets, such as web services, and at least one
runtime container, the runtime container being adapted for
enforcing runtime policies on SOA assets executed therein. In
the embodiment of claim 1, the method comprises the follow-
ing steps:

a. obtaining at least one design-time policy from a SOA
registry of the SOA, wherein the at least one design-time
policy applies to a plurality of SOA assets grouped into a
design-time domain;

b. automatically deriving at least one runtime policy from the
at least one design-time policy and at least one runtime
domain from the design-time domain, the runtime domain
indicating at least one runtime container;

c. performing a compatibility check to determine whether the
at least one runtime policy can be enforced by the at least
one runtime container; and

d. depending on the result of the compatibility check, auto-
matically deploying the at least one runtime policy to the
runtime container.

This embodiment proposes an approach for closing the
above-explained control gap by reliably combining design-
time and runtime SOA governance, wherein it is ensured that
the runtime governance comprehensively covers the design-
time policies. This way, it is ensured that no services or other
types of SOA assets violate the design-time governance dur-
ing runtime, which includes both unregistered “rogue” ser-
vices and registered services not following the design-time
governance during runtime.

The above objectives are achieved in that the embodiment
is based on the definition of domains, i.e. groupings of SOA
assets, so that the approach allows to automatically derive
runtime policies from a set of given design-time policies that
are enforcing the domain structure. In particular, domains are
advantageous for enforcing the domain structure also on
rogue services. Since rogue services are not registered in the
SOA registry/repository (see above), design-time policies
cannot be directly attached to them. Therefore, in accordance
with the invention the design-time domains are translated into

US 9,195,446 B2

3

runtime domains, which in turn represent a collection of
runtime containers. Enforcing policies on these runtime
domains ensures that rogue services are addressed properly. A
given SOA may be structured into domains according to
various aspects, such as the technical runtime environment
suitable for a group of assets, or the like. The concept of
domains simplifies the definition of policies governing the
interaction between services and enables an automatic and,
most importantly, comprehensive definition and deployment
of'runtime policies from a set of given design-time policies. In
addition, since a compatibility check is performed before the
SOA assets are deployed to runtime containers, it is ensured
that SOA assets execute only in such runtime containers
which can actually enforce the defined policies. This way, it is
ensured that the design-time governance is effectively and
comprehensively enforced during runtime. It is noted that the
above-mentioned US 2010/0161629 A1 also concerns a gov-
ernance framework based on domains, however, the frame-
work does not address the definition of domain policies and
their automatic and comprehensive deployment to runtime
containers. In fact, none ofthe above-discussed approaches of
the prior art provides a method for automatically enforcing
design-time policies during runtime in a safe manner.

In one aspect of the present invention, the at least one
design-time policy defines at least one restriction to be met by
the SOA assets within the respective design-time domain.
Accordingly, such domain-internal policies specify certain
restrictions and/or regulations that do not consider the inter-
action with other domains. Examples are a policy which
checks the proper authentication for Web service calls, or a
policy which verifies that manufacturing services are sup-
posed to only call services that are following certain manu-
facturing-relevant regulations.

Additionally or alternatively, the at least one design-time
policy may define at least one restriction to be met by an
interaction between two SOA assets from different design-
time domains. By addressing the interactions between
domains, such extra-domain policies enforce the domain
structure and/or certain interaction rules. An example for such
a domain policy is the restriction that services of the devel-
opment domain are not supposed to be called by services of
any other domain, which ensures that sensible development
data are not spread across the organization. In other words,
the policy eftectively introduces a firewall around the services
of'the development domain, which may be managed e.g. by a
special approval service, such as offered by the CentraSite
SOA registry/repository of applicant. A further example is to
restrict the set of services that can be called by the services of
the development domain.

This ensures that the development services are only depen-
dent on reliable services, in that it provides a set of domains
that are allowed to be called by services of the development
domain.

Preferably, the design-time policies and/or the runtime
policies comprise one or more WS-Policy assertions adhering
to the WS-Policy specification.

In another aspect of the present invention, performing the
compatibility check may comprise obtaining at least one
capability definition of the runtime container from the SOA
registry and comparing the at least one capability definition of
the runtime container with a required capability of the runt-
ime-policy. Accordingly, each policy may define one or more
capabilities needed in order to be enforced, and it is ensured
that the policy is only deployed to a runtime container which
has the desired capability, i.e. which is able to enforce the
policy.

30

40

45

50

55

4

In yet another aspect, the at least one design-time policy
may be defined in the SOA registry independent of a specific
runtime container and the compatibility check may be per-
formed based on a mapping obtained from the SOA registry,
wherein the mapping maps the design-time domain onto at
least one runtime domain, the runtime domain comprising the
runtime container. This way, an automatic yet comprehensive
and safe deployment is made possible.

Furthermore, the present method may comprise the further
step of issuing a notification, if the at least one runtime policy
cannot be enforced by the runtime container. Accordingly, the
automated deployment process ensures that gaps in the auto-
mated deployment process are properly detected and can then
be eliminated.

According to a further aspect of the invention, the design-
time domain and/or the runtime domain may be defined in at
least one taxonomy of the SOA registry. Taxonomies allow
for a particular flexible definition of an arbitrary complex
domain structure, as will be further explained in the detailed
description below.

The present invention also provides a SOA registry for
enabling the enforcement of design-time policies during runt-
ime in a service-oriented architecture, wherein the SOA com-
prises a plurality of SOA assets, such as web services, and at
least one runtime container, the runtime container being
adapted for enforcing runtime policies on SOA assets
executed therein, wherein the SOA registry comprises a
policy storage, adapted for storing at least one design-time
policy, wherein the at least one design-time policy applies to
aplurality of SOA assets grouped into a design-time domain,
means for automatically deriving at least one runtime policy
from the at least one design-time policy and at least one
runtime domain from the design-time domain, the runtime
domain indicating at least one runtime container, means for
performing a compatibility check to determine whether the at
least one runtime policy can be enforced by the at least one
runtime container, and means for, depending on the result of
the compatibility check, automatically deploying the at least
one runtime policy to the runtime container. Further advan-
tageous modifications of embodiments of the SOA registry of
the invention are defined in further dependent claims, wherein
the SOA registry may be adapted for performing any of the
above-described methods.

Also a service-oriented architecture (SOA) system is pro-
vided, the system comprising an SOA registry as described
above and at least one runtime container. Lastly, the present
invention relates to a computer program comprising instruc-
tions for implementing any of the above-described methods.

3. SHORT DESCRIPTION OF THE DRAWINGS

In the following detailed description, presently preferred
embodiments of the invention are further described with ref-
erence to the following figures:

FIG. 1: A block diagram showing a SOA registry/reposi-
tory in accordance with an embodiment of the present inven-
tion;

FIG. 2: A flowchart showing a method for the automated
deployment of design-time policies in accordance with an
embodiment of the present invention;

FIG. 3: A flowchart showing a method for performing a
compatibility check in accordance with an embodiment of the
present invention; and

FIG. 4: A schematic diagram showing exemplary domain
taxonomies in accordance with an embodiment of the present
invention.

US 9,195,446 B2

5
4. DETAILED DESCRIPTION

In general terms, example embodiments provide an
approach for closing the control gap normally present
between design-time and runtime SOA governance. Based on
the definition of domains, the approach allows to automati-
cally define a comprehensive set of runtime policies from a
set of given design-time policies that are enforcing the
domain structure. Mapping the domains to runtime domains
enables the automatic deployment of domain policies.
Domains

The concept of domains supports the SOA governance by
structuring a given set of SOA assets, such as web services.
For example, a domain may be formed by grouping at least
part of the SOA assets according to certain aspects of the
enterprise architecture. Technical domains can be defined for
a group of SOA assets that are related to a certain technical
task of the overall system, e.g. certain web services control-
ling manufacturing machinery in an automobile assembly
line may be grouped along their individual tasks (e.g. into an
engine manufacturing domain, a chassis manufacturing
domains and a “marriage” domain, in which the engine is
combined with the chassis). Likewise, business domains may
be defined by basing the grouping on the SOA assets accord-
ing to organizational and/or functional aspects of the enter-
prise. The above domains are called design-time domains,
since they relate to the physical and/or functional structuring
of the interworking components, which is performed during
design-time.

Runtime domains are defined by grouping the SOA runt-
ime containers. Examples of SOA runtime containers are
application servers or any other runtime components that
allow the execution of SOA artifacts/assets. Exemplary prod-
ucts are webMethods Integration Server, Apache Tomcat,
Apache Jetty, Oracle GlassFish, Oracle WebLogic and IBM
WebSphere. Just like other SOA assets, also SOA domains
(i.e. design-time and/or runtime domains) are registered in a
SOA registry/repository. Further, the domains of the present
invention may be divided into sub-domains, which can result
in arbitrarily complex hierarchical structures. Therefore, the
domains are preferably represented by taxonomies and their
categories in the SOA registry/repository.

FIG. 4 shows an exemplary definition of business and
runtime domains. As can be seen, the business (design-time)
domains and the runtime domains are represented by two
respective taxonomies (see the root nodes “Business
Domains” and “Runtime Domains”, respectively). The tax-
onomy “Business Domains” comprises a domain “Finance”
with associated web services Service 1, . . ., Service m, as
well as two further domains “HR” (human resources) and
“Procurement”. In this example, the business domains hold
the metadata of their business services. The taxonomy “Runt-
ime Domains” defines corresponding runtime domains
“Finance”, “HR” and “Procurement” and holds the metadata
of'the runtime containers belonging to the domain. The meta-
data registered for a runtime container in the SOA registry/
repository provides the necessary information for deploying
runtime policies (see further below). Beside the runtime
domains holding runtime containers, FIG. 4 shows a further
domain “External”, which represents all external runtime
containers, i.e. runtime containers external to the current SOA
system. All 3"/ party services not belonging to the current
SOA system preferably belong to the external domain. For
example if the SOA of a certain enterprise uses 3™ party
services like Amazon Web Services, these services belong to
the external domain. In another exemplary scenario the enter-
prise SOA runs in a private cloud. Thus, all services not

5

10

15

20

25

30

35

40

45

55

60

65

6

running within the enterprise cloud belong to the external
domain. This kind of representation is helpful for specifying
domain policies addressing interactions with SOA assets run-
ning on external runtime containers. In the example of FIG. 4,
all business services of the “Finance” domain are supposed to
run in the runtime containers of the “Finance” runtime
domain. Therefore, the “Finance” business domain is mapped
to the “Finance” runtime domain (see the dotted arrow in F1G.
4).

Domain-Based Policies

Policies are attached to domains for enforcing the domain
structure and for ensuring that the SOA assets of a domain are
compliant to certain predefined rules. Therefore, the scope of
a domain policy is the set of assets within in the domain, i.e.
all SOA assets of a given domain have to fulfill the policies
defined for that domain.

Domain-internal policies specify certain restrictions or
regulations that do not consider the interaction with other
domains. A simple example is a policy that checks the proper
authentication for Web service calls. A more advanced
example for domain internal policy is a policy verifies that
finance services are supposed to only call services that are
following certain tax relevant regulations.

The domain policies addressing the interactions between
domains enforce the domain structure and certain interaction
rules. An example for such a domain policy is the restriction
that services of the Finance business domain are not supposed
to be called by services of any other domain. This restriction
is supposed to ensure that sensible finance data are not spread
across the organization. The policy effectively introduces a
firewall around the services of the Finance business domain.

Policies may be implemented via executable script lan-
guages or JAVA programs, however, there are also several
XML-based standards such as WS-Policy, XACML and WS-
Trust for specifying policies in a declarative way. The
declarative specification facilitates an automatic translation.
In embodiments of the present invention, a rule-based
approach is proposed which is, however, not restricted to
declarative specifications. The approach proposed is also
applicable to any other format suitable for automatic transla-
tion.

The following sample shows a policy which implements
the above-mentioned firewall for the “Finance” domain.

Policy “FinanceFirewall” {
Rule {
When { getTargetDomain() == "Finance” }
Satisfy { getOriginDomain() == "Finance” }

The above-mentioned exemplary policy “FinanceFire-
wall” is shown in pseudo code. It comprises a rule which
checks whether the incoming request is directed to the
“Finance” domain. If this is the case, the request must also be
originating from the “Finance” domain. For specifying the
policies enforcing the domain structure, a set of functions
may be provided for retrieving domain-related information
from a request, such as the functions given in the above
example policy. An exemplary translation of the “Finance-
Firewall” policy into XML based syntax may look as follows:

<csp:Policy name="FinanceFirewall">
<csp:Rule>
<csp:When>

US 9,195,446 B2

7

-continued

<csp:Function name="Equals">
<csp:Parameter>
<csp:Function name="GetTargetDomain'/>
</csp:Parameter>
<csp:Parameter>"Finance”</csp:Parameter>
</esp:Function>
</esp:When>
<csp:Satisfy>
<csp:Function name="Equals">
<csp:Parameter>
<csp:Function name="GetTargetDomain'/>
</csp:Parameter>
<csp:Parameter>"Finance”</csp:Parameter>
</esp:Function>
</esp:Satisfy>
</esp:Rule>
</csp:Policy>

In order to make certain information accessible to the out-
side world in a well-controlled way, exceptions may be intro-
duced into the firewall. For example the above policy may be
changed as follows to establish such an exception:

Policy “FinanceFirewall*{
Rule {
When { getTargetDomain() == "Finance” }
Satisfy {
getOriginDomain() == "Finance"
Or getOriginService() == “Finance Results
Reporting”

¥
¥

This amended “FinanceFirewall” policy now checks if the
invoking service is from the “Finance” domain or if it is one
of'the known exceptions. In the example, only one exception
is defined, which is the “Finance Results Reporting” service.
However, the introduction of exceptions needs to be handled
very strictly. Preferably, a special approval service is used for
this purpose, such as the one offered by the CentraSite SOA
registry/repository of applicant. The approval service gets
preferably invoked whenever there is a change to a policy
enforcing the domain structure.

Another example is to restrict the set of services that can be
called by the services of the “Finance” domain. This ensures
that the business domain services are dependent only on
reliable services. This restriction may easily be stated with a
domain policy as shown in the following example:

Policy "FinanceDataProviders” {
Rule {
When { getOriginDomain() == "Finance” }
Satisfy {
getTargetDomain() == "Finance"
Or getTargteDomain() == "Controlling”
Or getTargetDomain () == “Procurement”
¥
¥

As can be seen, the “FinanceDataProviders” policy just
provides the three domains “Finance”, “Controlling” and
“Procurement” that are allowed to be called by services of the
“Finance” domain.

The domain policies are registered in the SOA registry/
repository and preferably referenced by one or more catego-
ries defining the domain in the business domain taxonomy. A
domain can have design-time and runtime domain policies.

10

15

20

25

30

40

45

50

55

60

65

8

The design-time domain policies enforce the domain struc-
ture and the asset compliance during design-time in the SOA
registry/repository.

The domain structure enforcing policies are preferably
assigned to more than one domain. For example, the exem-
plary policies shown above may be associated to the source
and the target domains mentioned in the respective policy,
which are “Finance”, “Controlling” and “Procurement”. Dur-
ing design-time, the domain policies are checked whenever
the assets of a domain are changed. The structure enforcing
policies need to be checked as to whether there is a change in
the interaction between SOA assets. Keeping track of the
interactions is one of the central use cases of a SOA registry/
repository. Therefore, any designed interactions are repre-
sented by relationships in the SOA registry/repository. This
means that if a service (or other SOA asset) is supposed to
consume the result of another service (or other SOA asset), a
consumer relationship is published to the SOA registry/re-
pository. To enforce the domain structure, the domain struc-
ture enforcing policies are checked whenever there is a
change of the consumer relations. The policies to be checked
can be determined based on the changing relationships and
the domains that are affected by this change. If any of the
policies is failing, the change is rejected.

Apart from the above-mentioned design-time aspects, a
domain may also have runtime policies addressing the runt-
ime interactions between SOA assets. Beside the aspects
covered by design-time policies, runtime policies cover dedi-
cated runtime aspects, such as logging, metrics and/or event
reporting. Typically, runtime policies are not enforced by
SOA registry/repositories, since SOA registry/repositories
are focused on the design time aspects and do not provide the
capability of enforcing runtime policies. Nevertheless runt-
ime policies can be managed by the SOA registry/repository.
For achieving the enforcement, the runtime policies need to
be deployed to dedicated runtime enforcement points or runt-
ime containers with policy enforcement capabilities. In the
current state of the art for SOA, design-time policies are
handed down to the runtime container together with the SOA
asset itself, i.e. the SOA asset carries its own policies, which
are asserted as the SOA asset runs. In the case of'a rogue asset,
design-time policies designed for other target containers are
transmitted along with the asset. The domain approach would
avoid executing these rogue assets in the wrong domain. For
example, a financial SOA asset would be designed to run in
the trusted financial container, not in an external cloud con-
tainer. Still, this asset runs in the cloud container because the
policy might be compatible with the runtime container, but
this does not mean that it is desired to run this way (because
of security, data protection issue, performance, etc.). The
domain approach would stop the asset from running in the
wrong container (according to the scheme: container not in
the design-time domain=not executed+alarm).

Automatic Deployment of Domain Policies

In real-life scenarios, the information registered in a SOA
registry/repository is typically neither correct nor compre-
hensive. Accordingly, there might be services bypassing or
violating the defined design-time policies. For example, there
might be rogue services that are calling services from
“Finance” domain (cf. FIG. 4). If these rogue services are not
belonging to the “Finance” domain, they are violating the
exemplary domain policies specified for the “Finance” busi-
ness domain. Moreover, there might be services invoking
services running on one of the runtime containers of the
“Finance” domain, but the invocation does not have the
appropriate authentication information.

US 9,195,446 B2

9

To make sure that the domain design-time policies are not
by-passed by any unregistered services, the present invention
proposes in one embodiment a method as schematically
shown in FIG. 2. As can be seen, one or more design-time
domains are defined in step 1000 and corresponding design-
time policies 110 are defined in step 2000. Steps 1000 and
2000 may be performed iteratively in order to refine the
design-time domain and policy definitions.

After the design-time domains and the corresponding
design-time policies 110 have been defined, the design-time
domain policies 110 are translated into runtime policies in
step 3000.

The first step of the translation of a design-time domain
policy is to copy the design-time policy 110, since the runtime
policy is not meant as a replacement. Rather, the design-time
policy is still needed for performing the above-explained
design-time governance. For domain structure enforcing
policies, the next step is to resolve all domain references in the
policy into the URIs of the runtime containers of the refer-
enced domains. This is necessary since runtime containers or
runtime policy enforcement points are not aware of any
domain definitions. Finally, a relationship between the
design-time policy and the result of the translation is created.
This allows checking for a design-time policy the status of the
runtime policies.

In the exemplary embodiment, the translated design-time
policies 110 are combined with the runtime-policies. The
combination can be done using the WS-Policy specification
which allows building complex policies by combining simple
policy assertions. For example assuming that the “Finance”
domain has a runtime policy that verifies that all messages are
signed, together with the “FinanceFirewall” domain policy
the result of the combination via WS-Policy looks as follows.

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<sp:SignedParts>
<sp:Body/>
</sp:SignedParts>
<csp:Policy name="“FinanceFirewall”>
<csp:Rule>

</csp:Rule>
</esp:Policy>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Here, the “FinanceFirewall” policy becomes a policy
assertion and it is combined with the assertion that checks the
proper signing.

When a runtime policy is defined for a business domain in
the SOA registry/repository 10, it is typically not known on
which runtime container 20 it will be deployed to later on (in
order to separate the logical/functional design from the spe-
cific physical implementation). Therefore, the design-time
policies 110 are preferably defined in the SOA registry/re-
pository 10 independently of a concrete runtime container 20.

To deploy domain runtime policies 110, suitable runtime
containers 20 thus need to be defined for a given domain. In
the exemplary embodiment, a runtime domain already has a
set of runtime containers 20 (note that the runtime domains
can be defined similar to the design-time domains in the SOA
registry/repository 10). For (business) design-time domains,
the runtime container assignment is preferably done by map-

10

15

20

25

30

35

40

45

50

55

60

65

10

ping a design-time domain to one or more runtime domains.
Also, multiple design-time domains can be mapped to the
same runtime domain.

Several runtime policy enforcement products support stan-
dards such as WS-Policy and WS-Security for specifying
runtime policies. Therefore, the runtime policies managed in
WS-Policy format do not need to be translated for such kinds
of runtime containers. However, embodiments of the present
invention are not restricted to these standard supporting runt-
ime enforcement points. If the runtime container or runtime
enforcement point is not standards-based, the runtime poli-
cies need to be translated into the supported format before
they can be deployed.

FIG. 3 shows a preferred process for translating (step 3000;
FIG. 2) and deploying (step 4000) runtime domain policies in
accordance with one embodiment of the present invention. As
can be seen in FIG. 3, the step 3100 serves to find out if the
runtime containers 20 of the domain provide the required
capabilities for enforcing the runtime domain policy/policies.
For runtime domain policies addressing the domain interac-
tion, the translation typically does not require any specific
policy enforcement capabilities, but only the capability to
find out the source and the target of a service invocation. For
translating other policies, more specific policy enforcement
capabilities are required. Since not every runtime container
20 offers the same set of capabilities, their capabilities must
be registered in the SOA registry/repository 10. The capabili-
ties are preferably given in terms of policy assertion types, as
defined in standards such as WS-Policy and WS-Security.
Examples are policy assertions that can verify whether mes-
sages are signed or encoded properly. Complex capabilities
may be defined by combining policy assertions. Every capa-
bility or policy assertion type has a unique qualified name.
The supported policy assertion types are maintained in the
capability taxonomy in the SOA registry/repository. The
metadata registered for a runtime container in the SOA reg-
istry/repository may then reference those capabilities it sup-
ports by referencing the categories of the capability tax-
onomy. The capability taxonomy may be extended whenever
a new type of runtime container 20 is registered. Having a
unique representation allows to match the policy assertions
referenced by a runtime policy with the policy assertions
provided by the runtime container.

If a runtime policy cannot be deployed to a runtime con-
tainer because of missing capabilities, the SOA registry/re-
pository 10 preferably sends out an according notification.
This ensures that gaps in the automated deployment process
are properly communicated. For deploying a runtime domain
policy successfully to a runtime domain, the deployment
must preferably be successful for all containers 20 of that
domain.

Exemplary Implementation

As explained above, the implementation of preferred
embodiments of the present invention is based on a SOA
registry/repository 10 and on one or more runtime containers
20. FIG. 1 gives an overview of how the registry/repository 10
and the runtime containers 20 (cf. the exemplary containers
20a and 205) are interacting.

Exemplary SOA Registry/Repository

There are several SOA registry/repository products avail-
able which provide the necessary capabilities for implement-
ing aspects of the present invention. An example is the Cen-
traSite registry/repository of Software AG. The registry/
repository 10 manages the registered SOA assets in an asset
catalogue 100. The asset catalogue 100 supports a flexible
metadata model for the metadata of services, runtime con-
tainers 20 and runtime policies. Examples for flexible meta-

US 9,195,446 B2

11

data models are UDDI or JAXR. The metadata stored in the
asset catalogue may comprise data such as a name and
description of an asset. For Web Services, also the WSDL as
well the accessUris can be stored. SOA Assets may be con-
nected via associations to represent certain relationships
between them. An example is the consumer relationship
between services. The CentraSite registry/repository makes
use of these relationships to offer dependency analysis capa-
bilities.

In order to capture the meaning of SOA assets, the asset
catalogue needs to support classifications. The CentraSite
asset catalogue supports the definition of taxonomies and
categories and using them for classifying SOA assets.

The registry/repository 10 further supports the definition
and enforcement of design-time policies 110 via a design-
time policy enforcement point for ensuring design-time con-
straints of the SOA registry/repository. The design-time
polices are triggered whenever there is a change to the meta-
data stored in the asset catalogue. The metadata of the design-
time policies are also registered in the SOA registry policies.

The CentraSite registry/repository supports a collection of
predefined policies or policy actions. Design-time policies
may be defined by combining predefined policy assertions. In
addition, general purpose custom policies can be defined e.g.
by providing a script or an executable function. The policies
may reject changes, but they may also trigger other actions
such as notifying a user about changes via email or other
messaging capabilities of the SOA registry/repository. A
more advanced action is the initiation of an approval work-
flow. Here, the SOA registry/repository creates approval
requests that can be accepted or rejected by the user. The
metadata changes are rejected or accepted accordingly.

Furthermore the SOA registry/repository needs to offer
advanced search capabilities for looking up metadata for
SOA assets to enable their reusage.

Exemplary Runtime Policy Enforcement Point

For implementing embodiments of the present invention,
runtime policy enforcement points (PEP) or runtime contain-
ers with policy enforcement capabilities may be needed.
Sample products include Layer 7°s SOA Gateway and Soft-
ware AG’s webmethods Mediator. Runtime PEPs are verify-
ing runtime policies on the requests and responses of a service
invocation in a SOA. Runtime policies are supposed to verify
security constraints and other runtime aspects like logging,
metrics and event reporting. For specifying runtime policies
declaratively, they support standards like WS-Policy and WS-
Security. A runtime PEP typically supports a set of predefined
policy assertions. Products like Layer 7°s SOA Gateway and
Software AG’s webmethods Mediator support a close inte-
gration with SOA registry/repository like CentraSite. Out of
the box the CentraSite SOA registry/repository allows to
manage Mediator runtime policies and there deployment to
Mediator instances.

Combining SOA Registry/Repository and Runtime Enforce-
ment Point

For implementing embodiments of the present invention,
the taxonomies and categories in the SOA registry/repository
may be used for representing business (design-time) and runt-
ime domains. One way for representing business and runtime
domains is to define a taxonomy for business domains and a
taxonomy for runtime domains. Each domain is represented
by a category in the taxonomies. The mapping between busi-
ness domains and runtime domains may then be represented
by relationships between the categories of the domain tax-
onomies 120. SOA assets can be assigned to a category rep-
resenting a domain by adding a classification to the asset
pointing to the domain category.

10

15

20

25

30

35

40

45

50

60

65

12

For defining the scope of a domain policy, it is added to a
domain category. The policy enforcement needs to be
extended to take notice of this assignment to enable the
design-time enforcement of the domain structure.

General purpose design-time policies can be used to do the
deduction of the runtime domain policies and to translate and
deploy them to runtime containers. The deployment policies
running in the registry/repository 10 are able to interact with
the registered runtime containers 20. This includes that every
type of runtime container 20 has its own deployment policy
that knows the supported policy format. For communicating
any failing deployments the notification mechanism 130 can
be used to communicate any failing policy translation or
failing policy deployment. The notifications 130 are triggered
by the translation and deployment policies.

Taxonomies are preferably used for representing the runt-
ime policy enforcement capabilities. One approach is to
define a taxonomy where each category represents a policy
assertion type. These policy assertion types can be taken from
the WS-standards. The taxonomy can also contain propriety
policy assertion types. The metadata of a runtime is classified
with the policy assertion categories the runtime container is
supporting.

During deployment, the deployment policies extract the
policy assertion types from a runtime policy and match them
against the capability taxonomy. A support of proprietary
policy assertions allows to support a wide variety of runtime
PEPs. Even using hardware-based policy enforcement prod-
ucts such as Layer 7 or IBM Datapower is conceivable in this
approach. It just needs to be ensured that the policy enforce-
ment cannot be bypassed.

It will be appreciated that as used herein, the terms system,
subsystem, service, module, program logic, programmed
logic circuitry, and the like may be implemented as any suit-
able combination of software, hardware, firmware, and/or the
like. It also will be appreciated that the storage locations/
repositories herein may be any suitable combination of disk
drive devices, memory locations, solid state drives,
CD-ROMs, DVDs, tape backups, storage area network
(SAN) systems, and/or any other appropriate non-transitory
tangible computer readable storage medium. It also will be
appreciated that the techniques described herein may be
accomplished by having at least one processor execute
instructions that may be tangibly stored on a non-transitory
computer readable storage medium. Similar statements apply
with respect to the clients, servers, and/or other elements in
various network arrangements.

What is claimed is:

1. A computer-implemented method for enabling the
enforcement of design-time policies during runtime in a ser-
vice-oriented architecture (SOA),

wherein the SOA comprises a plurality of SOA assets and
at least one runtime container, the runtime container
being configured to enforce runtime policies on SOA
assets executed therein,

the method comprising:

a. obtaining at least one design-time policy from a SOA
registry of the SOA, wherein the at least one design-time
policy applies to a plurality of SOA assets grouped into
a design-time domain;

b. automatically deriving at least one runtime policy from
the at least one design-time policy and at least one runt-
ime domain from the design-time domain, the at least
one runtime domain indicating at least one runtime con-
tainer;

US 9,195,446 B2

13

c. performing a compatibility check to determine whether
the at least one runtime policy can be enforced by the at
least one runtime container; and

d. depending on the result of the compatibility check, auto-
matically deploying the at least one runtime policy to the
runtime container.

2. The method of claim 1, wherein the at least one design-

time policy defines at least one restriction to be met by the
SOA assets within the respective design-time domain.

3. The method of claim 1, wherein the at least one design- 10

time policy defines at least one restriction to be met by an
interaction between two SOA assets from different design-
time domains.

4. The method of claim 1, wherein the design-time policies
and/or the runtime policies comprise one or more WS-Policy
assertions.

5. The method of claim 1, wherein the performing of the
compatibility check comprises:

obtaining at least one capability definition of the runtime
container from the SOA registry; and

comparing the at least one capability definition of the runt-
ime container with a required capability of the runtime-
policy.

6. The method of claim 1,

wherein the at least one design-time policy is defined in the
SOA registry independent of a specific runtime con-
tainer; and

wherein the compatibility check is performed based on a
mapping obtained from the SOA registry, wherein the
mapping maps the design-time domain onto at least one
runtime domain, the runtime domain comprising the
runtime container.

7. The method of claim 1, further comprising issuing a
notification if the at least one runtime policy cannot be
enforced by the runtime container.

8. The method of claim 1, wherein the design-time domain
and/or the runtime domain is defined in at least one taxonomy
of the SOA registry.

9. A non-transitory computer readable storage medium
tangibly storing instructions that, when executed by a com-
puter system including at least one processor and a memory,
implements a method in accordance with claim 1.

10. A SOA registry for enabling the enforcement of design-
time policies during runtime in a service-oriented architec-
ture (SOA),

wherein the SOA comprises a plurality of SOA assets, and
at least one runtime container, the runtime container
being configured to enforce runtime policies on SOA
assets executed therein,

wherein the SOA registry comprises:

a. a policy storage, configured to store at least one design-
time policy, wherein the at least one design-time policy
applies to a plurality of SOA assets grouped into a
design-time domain;

b. at least one processor configured to:
automatically derive at least one runtime policy from the

at least one design-time policy and at least one runt-
ime domain from the design-time domain, the at least
one runtime domain indicating at least one runtime
container;

14

perform a compatibility check to determine whether the
at least one runtime policy can be enforced by the at
least one runtime container; and
depending on the result of the compatibility check, auto-
5 matically deploy the at least one runtime policy to the
runtime container.

11. The SOA registry of claim 10, wherein the at least one
processor is further configured, in connection with the per-
forming of the compatibility check, to:

obtain at least one capability definition of the runtime

container from the SOA registry; and

compare the at least one capability definition of the runtime

container with a required capability of the runtime-
policy.

12. The SOA registry of claim 10,

wherein the at least one design-time policy is defined in the

SOA registry independent of a specific runtime con-
tainer; and

wherein the at least one processor is further configured, in

connection with the performing of the compatibility
check, to operate based on a mapping obtained from the
SOA registry, wherein the mapping maps the design-
time domain onto at least one runtime domain, the runt-
ime domain comprising the runtime container.

13. The SOA registry of claim 10, further comprising at
least one taxonomy configured to define the design-time
domain and/or the runtime domain.

14. The SOA registry of claim 10, wherein the at least one
processor is further configured to issue a notification if the at
least one runtime policy cannot be enforced by the runtime
container.

15. A service-oriented architecture (SOA) system, com-
prising at least one processor, a memory, a SOA registry in
accordance with claim 10, and at least one runtime container.

16. The method of claim 1, wherein at least some of the
SOA assets are web services.

17. The SOA registry of claim 10, wherein at least some of
the SOA assets are web services.

18. The method of claim 1, wherein at least one design-
time policy includes sending a notification of changes in the
SOA registry.

19. The SOA registry of claim 10, wherein at least one
design-time policy includes sending a notification of changes
in the SOA registry.

20. The method of claim 1, wherein automatically deriving
at least one runtime policy from the at least one design-time
policy includes copying the at least one design-time policy,
translating the at least one copied design-time policy into the
at least one runtime policy by resolving all domain references
in the design-time policy into URIs of the at least one runtime
container of the at least one derived runtime domain, and
creating a relationship between the at least one design-time
policy and the corresponding translated at least one runtime
policy.

21. The method of claim 1, further comprises combining,
based on WS-Policy specifications, the at least one design-
time policy with the at least one derived runtime policy.

20

25

40

#* #* #* #* #*

